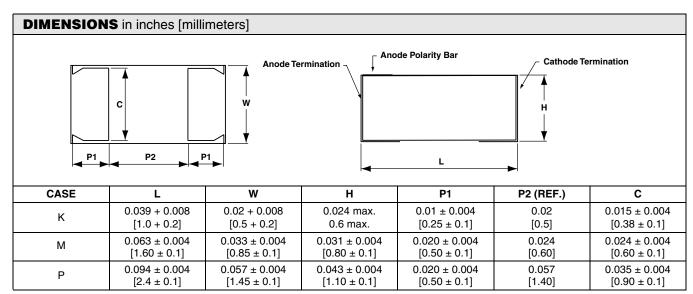


Solid Tantalum Chip Capacitors MICROTAN™ Leadframeless Molded

FEATURES



PERFORMANCE CHARACTERISTICS

Operating Temperature: - 55 °C to + 85 °C (to + 125 °C voltage derating)

Capacitance Range: $0.68 \mu F$ to $220 \mu F$ Capacitance Tolerance: $\pm 20 \%$ standard Voltage Range: 2.5 WVDC to 50 WVDC

ORDERING INFORMATION 298D 106 010 MODEL CAPACITANCE CAPACITANCE DC VOLTAGE RATING CASE CODE TERMINATION REEL SIZE AND **TOLERANCE** AT + 85 °C **PACKAGING** This is expressed in picofarads. The first See Ratings $X0 = \pm 20 \%$ This is expressed in volts. 2 = 100 % Tin T = Tape and Reel $X9 = \pm 10 \%$ To complete the three-digit and Case 4 = Gold Plated 7" [178 mm] Reel two digits are the block, zeros precede the Codes Table significant figures. The voltage rating. A decimal third is the number of point is indicated by an "R" zeros to follow. (6R3 = 6.3 V).Note: Preferred tolerance and reel size are in bold. We reserve the right to supply higher voltage ratings and tighter capacitance tolerance capacitors in the same case size. Voltage substitutions will be marked with the higher voltage rating.

^{*} Please see document "Vishay Green and Halogen-Free Definitions (5-2008)" http://www.vishay.com/doc?99902

Vishay Sprague

RATINGS	RATINGS AND CASE CODES							
μF	2.5 V	4 V	6.3 V	10 V	16 V	25 V	35 V	50 V
0.68							M*	
1.0			K	K	K/M	M		P*
2.2			K/M	K/M	М			
3.3								
4.7		K	K*/M	M	М	Р		
6.8								
10		K/M	K*/M	M				
15		K*		M				
22		M	M	M*				
33		M	M	P*				
47	М	М	P*	Р				
100		P*	Р					
220	Р	Р						

Note: * Preliminary values, contact factory for availability.

MARKING					
	M-C	CASE	P-C	ASE	
M-case	V	CODE	CAP, µF	CODE	
Polarity Bar Voltage Code	4	G	0.68	w	
	6.3	J	1	Α	
	10	Α	2.2	J	P-case
	16	С	3.3	N	Polarity Bar Voltage Code Code
A	20	D	4.7	S	Code /
	25	E	6.8	W	
	35	V	10	а	
	50	Т	15	е	$G\overline{J}$
K-case			22		
			33	n	
			47	S	
			68	W	
			100	Ā	
			150	Ē	
			220	J	

STANDARD RATINGS							
CAPACITANCE (µF)	CASE CODE	PART NUMBER	MAX. DC LEAKAGE AT + 25 °C (μΑ)	MAX. DF AT + 25 °C (%)	MAX. ESR AT + 25 °C 100 kHz (Ω)	MAX. RIPPLE 100 kHz I _{rms} (A)	ΔC/C ⁽¹⁾ (%)
		2.5 WVDC AT + 85 °C, SU	IRGE = 3.3 V	. 1.6 WVDC AT	+ 125 °C, SURGE	= 2.1 V	
47	М	298D476X02R5M2T	2.4	20	4.0	0.08	± 30
220	Р	298D227X02R5P2T	11.0	30	3.0	0.122	± 30
		4 WVDC AT + 85 °C, SU			· 125 °C, SURGE	= 3.4 V	
4.7	K	298D475X0004K2T	0.5	15	20	0.027	± 30
10	K	298D106X0004K2T	4.0	50	20	0.027	± 30
10	M	298D106X0004M2T	0.5	8.0	5.0	0.071	± 10
15	K	298D156X0004K2T (2)	10	50	20	0.027	± 30
22	M	298D226X0004M2T	0.9	15	4.0	0.08	± 15
33	M	298D336X0004M2T	2.6	15	4.0	0.08	± 20
47	M	298D476X0004M2T	3.8	20	4.0	0.08	± 30
100	Р	298D107X0004P2T	4.0	20	2.0	0.1	± 30
220	Р	298D227X0004P2T	17.6	30	3.0	0.122	± 30
		6.3 WVDC AT + 85 °C,	SURGE = 8 V	. 4 WVDC AT +	· 125 °C, SURGE	= 5 V	
1.0	K	298D105X06R3K2T	0.5	6.0	20	0.027	± 30
2.2	K	298D225X06R3K2T	0.5	8.0	20	0.027	± 30
2.2	М	298D225X06R3M2T	0.5	10	5.0	0.07	± 10
4.7	K	298D475X06R3K2T (2)	4.0	50	20	0.027	± 30
4.7	М	298D475X06R3M2T	0.5	8.0	3.0	0.09	± 10
10	K	298D106X06R3K2T (2)	10	50	20	0.027	± 30
10	М	298D106X06R3M2T	0.6	8.0	5.0	0.071	± 10
15	М	298D156X06R3M2T	1.0	20	7.0	0.06	± 20

Solid Tantalum Chip Capacitors MICROTAN[™] Leadframeless Molded

STANDARD RATINGS							
CAPACITANCE (µF)	CASE CODE	PART NUMBER	MAX. DC LEAKAGE AT + 25 °C (μΑ)	MAX. DF AT + 25 °C (%)	MAX. ESR AT + 25 °C 100 kHz (Ω)	MAX. RIPPLE 100 kHz I _{rms} (A)	∆C/C ⁽¹⁾ (%)
		6.3 WVDC AT + 85 °C,	SURGE = 8 V	. 4 WVDC AT +	· 125 °C, SURGE	= 5 V	
22	М	298D226X06R3M2T	2.8	20	5.5	0.067	± 15
33	M	298D336X06R3M2T	4.2	30	7.5	0.058	± 30
47	Р	298D476X06R3P2T	3.0	22	3.0	0.122	± 20
100	Р	298D107X06R3P2T	6.3	30	2.0	0.150	± 20
		10 WVDC AT + 85 °C,	SURGE = 13 V	7 WVDC AT +	+ 125 °C, SURGE	= 8 V	
1.0	K	298D105X0010K2T	0.5	6.0	20	0.027	± 30
2.2	K	298D225X0010K2T	0.5	8.0	15	0.027	± 30
2.2	M	298D225X0010M2T	0.5	10	10	0.05	± 10
4.7	M	298D475X0010M2T	0.5	6.0	5.0	0.071	± 15
10	M	298D106X0010M2T	1.0	20	7.5	0.058	± 15
15	M	298D156X0010M2T	1.5	20	7.5	0.058	± 20
22	M	298D226X0010M2T	22	30	8.0	0.06	± 30
33	Р	298D336X0010P2T	3.3	10	2.0	0.150	± 10
47	Р	298D476X0010P2T	4.7	22	3.0	0.122	± 20
		16 WVDC AT + 85 °C, S	URGE = 20 V	. 10 WVDC AT +	+ 125 °C, SURGE	= 12 V	
1.0	K	298D105X0016K2T	3.0	10	20	0.027	± 30
1.0	M	298D105X0016M2T	0.5	6.0	12.0	0.045	± 15
2.2	M	298D225X0016M2T	0.5	10	12.0	0.045	± 15
4.7	M	298D475X0016M2T	0.8	8.0	6.0	0.06	± 15
	•	25 WVDC AT + 85 °C, S	URGE = 32 V	. 17 WVDC AT +	+ 125 °C, SURGE	= 20 V	
1.0	М	298D105X0025M2T	0.5	6.0	10.0	0.05	± 10
4.7	Р	298D475X0025P2T	1.2	6.0	4.0	0.106	± 10

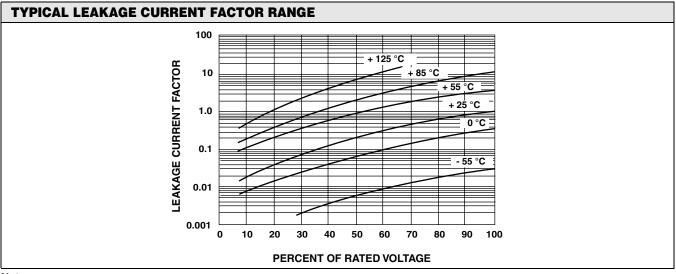
Notes:

CAPACITORS PERFORMANCE CHARACTERISTICS

ELECTRICAL PERFORMANCE CHARACTERISTICS					
ITEM	PERFORMANCE CHARACTERISTICS				
Category Temperature Range	- 55 °C to + 85 °C (to + 12	25 °C with voltage deratin	g)		
Capacitance Tolerance	± 20 %, ± 10 % (at 120 H	z) 2 V _{rms} at + 25 °C using	a capacitance bridge		
Dissipation Factor (at 120 Hz)			e method, at 25 °C, 120 Hz.		
ESR (100 kHz)	Limits per Standard Ratin	gs Table. Tested via bridg	e method, at 25 °C, 100 kH:	z.	
Leakage Current	with 1 kΩ resistor in ser described in. Standard F applied voltage. See grap	After application of rated voltage applied to capacitors for 5 minutes using a steady source of power with $1 \text{ k}\Omega$ resistor in series with the capacitor under test, leakage current at 25 °C is not more than described in. Standard Ratings Table. Note that the leakage current varies with temperature and applied voltage. See graph below for the appropriate adjustment factor.			
Reverse Voltage	Capacitors are capable of withstanding peak voltages in the reverse direction equal to: 10 % of the DC rating at + 25 °C 5 % of the DC rating at + 85 °C Vishay does not recommended intentional or repetitive application of reverse voltage				
Temperature Derating	If capacitors are to be used at temperatures above + 25 °C, the permissible rms ripple current or voltage shall be calculated using the derating factors: 1.0 at + 25 °C 0.9 at + 85 °C 0.4 at + 125 °C				
Maximum Permissible Power Dissipation at 25 °C (W) in free air	K-case: 0.015				
	+ 85 °C F		+ 125 °C I	RATING	
	WORKING VOLTAGE (V)	SURGE VOLTAGE (V)	WORKING VOLTAGE (V)	SURGE VOLTAGE (V)	
	4	5.2	2.7	3.4	
	6.3	8	4	5	
Operating Temperature	10	13	7	8	
	16	20	10	12	
	20	26	13	16	
	25	32	17	20	
	35	46	23	28	
	50	65	33	40	

www.vishay.com

For technical questions, contact: tantalum@vishay.com


Document Number: 40065 Revision: 01-Sep-08

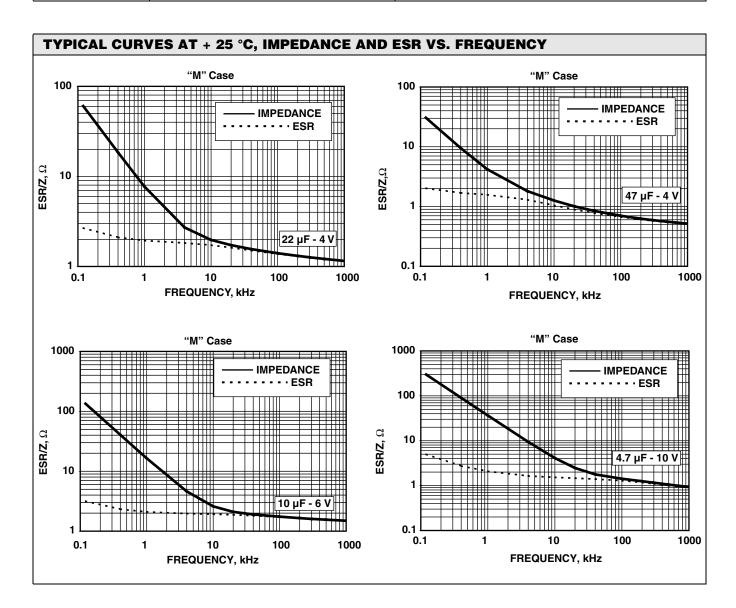
⁽¹⁾ See Performance Characteristics tables, page 41

⁽²⁾ In development

Vishay Sprague

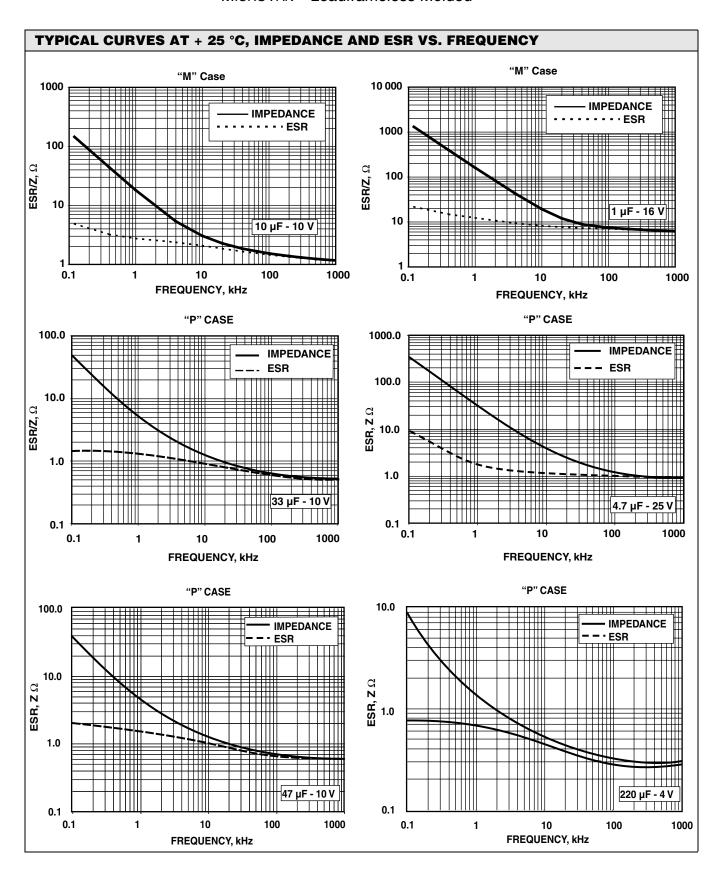
Notes

- At + 25 °C, the leakage current shall not exceed the value listed in the Standard Ratings Table
- At + 85 °C, the leakage current shall not exceed 10 times the value listed in the Standard Ratings Table
- At + 125 °C, the leakage current shall not exceed 12 times the value listed in the Standard Ratings Table

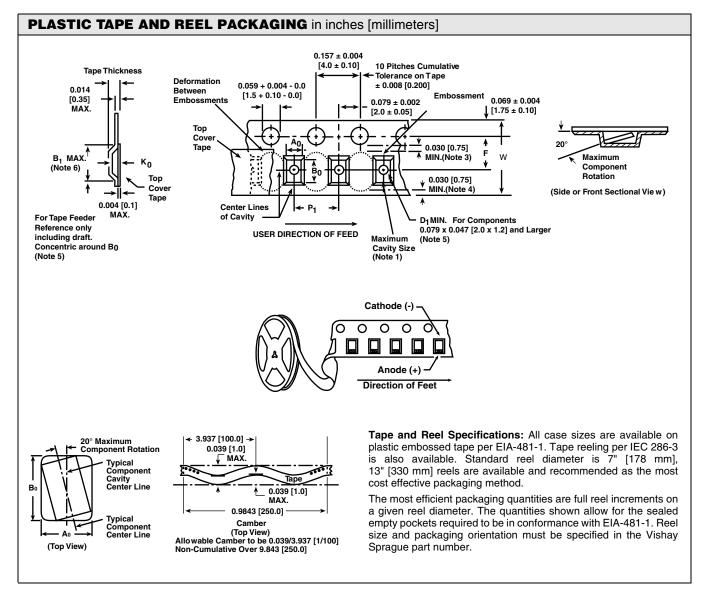

ENVIRONMENTAL PERFORMANCE CHARACTERISTICS				
ITEM	CONDITION	POST TEST PERFORI	MANCE	
Life Test at + 85 °C	1000 h application of rated voltage at 85 °C with a 3 Ω series resistance, MIL-STD 202G Method 108A	Capacitance Change Dissipation Factor Leakage Current	Refer to Standard Ratings Table Not to exceed 150 % of initial Not to exceed 200 % of initial	
Humidity Tests	At 40 °C/90 % RH 500 h, no voltage applied. MIL-STD 202G Method 103B	Capacitance Change Dissipation Factor Leakage Current	Refer to Standard Ratings Table Not to exceed 150 % of initial Not to exceed 200 % of initial	
Thermal Shock	At - 55 °C/+ 125 °C, 30 min each, for 5 cycles. MIL-STD 202G Method 107G	Capacitance Change Dissipation Factor Leakage Current	Refer to Standard Ratings Table Not to exceed 150 % of initial Not to exceed 200 % of initial	

MECHANICAL	MECHANICAL PERFORMANCE CHARACTERISTICS			
TEST CONDITION	CONDITION	POST TEST PERFORMANCE		
Terminal Strength	Apply a pressure load of 5 N for 10 ± 1 s horizontally to the center of capacitor side body.	Capacitance Change Dissipation Factor Leakage Current Refer to Standard Ratings Table Initial specified value or less Initial specified value or less		
	AECQ-200 rev. C Method 006	There shall be no mechanical or visual damage to capacitors post-conditioning.		
Substrate Bending (Board flex)	With parts soldered onto substrate test board, apply force to the test board for a deflection of 1 mm. AECQ-200 rev. C Method 005	Capacitance Change Dissipation Factor Leakage Current Refer to Standard Ratings Table Initial specified value or less Initial specified value or less		
Vibration	MIL-STD-202G, Method 204D, 10 Hz to 2000 Hz, 20G peak	Capacitance Change Dissipation Factor Leakage Current Refer to Standard Ratings Table Initial specified value or less Initial specified value or less		
	10 112 to 2000 112, 2000 poun	There shall be no mechanical or visual damage to capacitors post-conditioning.		
Shock	Mil-Std-202G, Method 213B, Condition I, 100G peak	Capacitance Change Refer to Standard Ratings Table Dissipation Factor Initial specified value or less Leakage Current Initial specified value or less		
	·	There shall be no mechanical or visual damage to capacitors post-conditioning.		

Solid Tantalum Chip Capacitors MICROTAN™ Leadframeless Molded



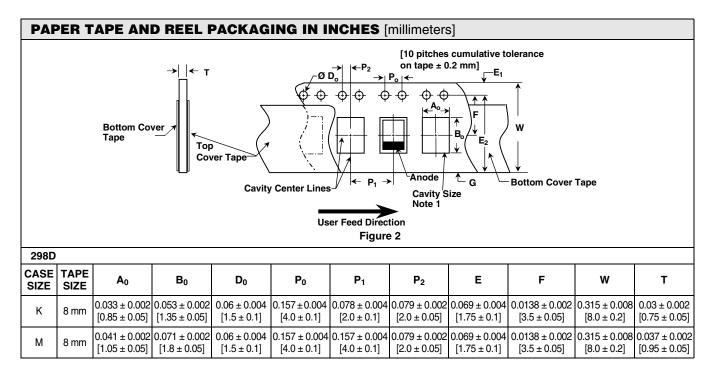
MECHANICAL	MECHANICAL PERFORMANCE CHARACTERISTICS				
Resistance to Solder Heat	At 260 °C, for 10 s, reflow	Capacitance Change Refer to Standard Ratings Table Dissipation Factor Not to exceed 150 % of initial Leakage Current Not to exceed 200 % of initial There shall be no mechanical or visual damage to capacitors post-conditioning.			
Solderability	MIL-STD-202G, Method 208H, ANSI/J-Std-002, Test B. Applies only to solder and tin plated terminations. Does not apply to gold terminations.	There shall be no mechanical or visual damage to capacitors post-conditioning.			
Resistance to Solvents	MIL-STD-202, Method 215D	There shall be no mechanical or visual damage to capacitors post-conditioning.			
Flammability	Encapsulation materials meet UL94 VO with an oxygen index of 32 %.				



Solid Tantalum Chip Capacitors MICROTAN[™] Leadframeless Molded

Note:

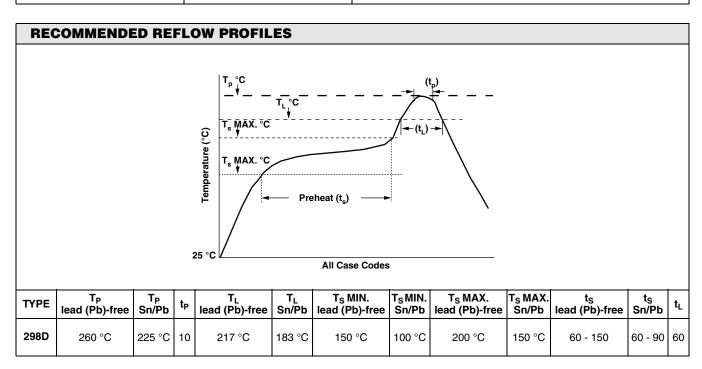
Metric dimensions will govern. Dimensions in inches are rounded and for reference only.

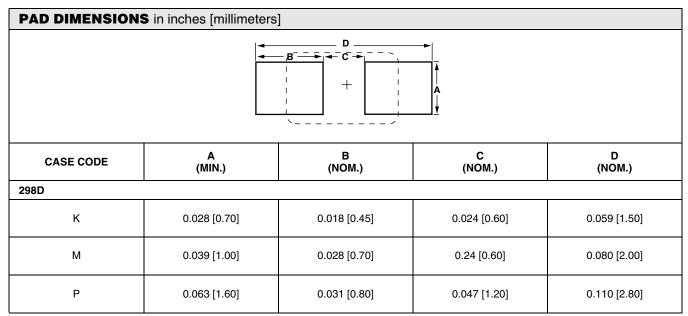

CASE CODE	TAPE SIZE	B ₁ (MAX.)	D ₁ (MIN.)	F	K ₀ (MAX.)	P ₁	w
298D							
Р	8 mm	0.108 [2.75]	0.039 [1.0]	0.138 ± 0.002 [3.5 ± 0.05]	0.054 [1.37]	0.157 ± 0.004 [4.0 ± 1.0]	0.315 ± 0.0118/- 0.0039 [8.0 ± 0.30/- 0.10]

Document Number: 40065 Revision: 01-Sep-08

Solid Tantalum Chip Capacitors MicroTan™ Leadframeless Molded

Vishay Sprague


STANDARD PACKAGING QUANTITY				
SERIES	CASE CODE	QTY (PC	S/REEL)	
SERIES	CASE CODE	7" REEL	13" REEL	
298D	К	10 000	N/a	
	М	4000	N/a	
	Р	3000	N/a	


RECOMMENDED VOLTAGE DERATING GUIDELINES						
STANDARD CONDITIONS: FOR EXAMPLE: OUTPUT FILTERS	STANDARD CONDITIONS: FOR EXAMPLE: OUTPUT FILTERS					
Capacitor Voltage Rating	Operating Voltage					
4.0	2.5					
6.3	3.6					
10	6.0					
16	10					
20	12					
25	15					
35	24					
50	28					
SEVERE CONDITIONS: FOR EXAMPLE: INPUT FILTERS						
Capacitor Voltage Rating	Operating Voltage					
4.0	2.5					
6.3	3.3					
10	5.0					
16	8.0					
20	10					
25	12					
35	15					
50	24					

Solid Tantalum Chip Capacitors MICROTAN™ Leadframeless Molded

POWER DISSIPATION				
CASE CODE		MAXIMUM PERMISSIBLE POWER DISSIPATION AT + 25 °C (W) IN FREE AIR		
	К	0.015		
298D	M	0.025		
	Р	0.045		

Vishay Sprague

GUIDE TO APPLICATION

1. A-C Ripple Current: The maximum allowable ripple current shall be determined from the formula:

$$I_{rms} = \sqrt{\frac{P}{R_{ESR}}}$$

where.

P =

Power dissipation in watts at + 25 °C as given in the table in paragraph number 5

(power dissipation).

R_{ESR} =

The capacitor equivalent series resistance at the specified frequency.

2. A-C Ripple Voltage: The maximum allowable ripple voltage shall be determined from the formula:

$$V_{rms} = Z \sqrt{\frac{P}{R_{ESR}}}$$

or, from the formula:

$$V_{rms} \, = \, I_{rms} \times Z$$

where,

P=

Power dissipation in watts at + 25 °C as given in the table in paragraph number 5

(power dissipation).

 $R_{ESR} =$

The capacitor equivalent series resistance at the specified frequency.

Z =

The capacitor impedance at the specified

frequency.

- 2.1 The sum of the peak AC voltage plus the applied DC voltage shall not exceed the DC voltage rating of the capacitor.
- 2.2 The sum of the negative peak AC voltage plus the applied DC voltage shall not allow a voltage reversal exceeding 10 % of the DC working voltage at + 25 °C.
- 3. Reverse Voltage: These capacitors are capable of withstanding peak voltages in the reverse direction equal to 10 % of the DC rating at + 25 °C, 5 % of the DC rating at + 85 °C and 1 % of the DC rating at + 125 °C.
- 4. Temperature Derating: If these capacitors are to be operated at temperatures above + 25 °C, the permissible rms ripple current or voltage shall be calculated using the derating factors as shown:

	TEMPERATURE	DERATING FACTOR
	+ 25 °C	1.0
	+ 85 °C	0.9
	+ 125 °C	0.4

5. Power Dissipation: Power dissipation will be affected by the heat sinking capability of the mounting surface. Non-sinusoidal ripple current may produce heating effects which differ from those shown. It is important that the equivalent Irms value be established when calculating permissible operating levels. (Power Dissipation calculated using + 25 °C temperature rise.)

- Printed Circuit Board Materials: Molded capacitors 6. are compatible with commonly used printed circuit board materials (alumina substrates, FR4, FR5, G10, PTFE-fluorocarbon and porcelanized steel).
- 7. Attachment:
- 7.1 Solder Paste: The recommended thickness of the solder paste after application is 0.007" ± 0.001" [0.178 mm \pm 0.025 mm]. Care should be exercised in selecting the solder paste. The metal purity should be as high as practical. The flux (in the paste) must be active enough to remove the oxides formed on the metallization prior to the exposure to soldering heat. In practice this can be aided by extending the solder preheat time at temperatures below the liquidous state of the solder.
- 7.2 Soldering: Capacitors can be attached conventional soldering techniques; vapor phase, convection reflow, infrared reflow, wave soldering and hot plate methods. The Soldering Profile charts show recommended time/temperature conditions for Preheating is recommended. The soldering. recommended maximum ramp rate is 2 °C per second. Attachment with a soldering iron is not recommended due to the difficulty of controlling temperature and time at temperature. The soldering iron must never come in contact with the capacitor.
- 7.2.1 Backward and Forward Compatibility: Capacitors with SnPb or 100 % tin termination finishes can be soldered using SnPb or lead (Pb)-free soldering processes.
- 8. Cleaning (Flux Removal) After Soldering: Molded capacitors are compatible with all commonly used solvents such as TES, TMS, Prelete, Chlorethane, Terpene and aqueous cleaning media. However, CFC/ODS products are not used in the production of these devices and are not recommended. Solvents containing methylene chloride or other epoxy solvents should be avoided since these will attack the epoxy encapsulation material.
- 8.1 When using ultrasonic cleaning, the board may resonate if the output power is too high. This vibration can cause cracking or a decrease in the adherence of the termination. DO NOT EXCEED 9W/I at 40 kHz for 2 minutes.
- 9. **Recommended Mounting Pad Geometries: Proper** mounting pad geometries are essential for successful solder connections. These dimensions are highly process sensitive and should be designed to minimize component rework due to unacceptable solder joints. The dimensional configurations shown are the recommended pad geometries for both wave and reflow soldering techniques. These dimensions are intended to be a starting point for circuit board designers and may be fine tuned if necessary based upon the peculiarities of the soldering process and/or circuit board design.

Vishay

Disclaimer

All product specifications and data are subject to change without notice.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained herein or in any other disclosure relating to any product.

Vishay disclaims any and all liability arising out of the use or application of any product described herein or of any information provided herein to the maximum extent permitted by law. The product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein, which apply to these products.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay.

The products shown herein are not designed for use in medical, life-saving, or life-sustaining applications unless otherwise expressly indicated. Customers using or selling Vishay products not expressly indicated for use in such applications do so entirely at their own risk and agree to fully indemnify Vishay for any damages arising or resulting from such use or sale. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

Product names and markings noted herein may be trademarks of their respective owners.

Revision: 18-Jul-08

Document Number: 91000 www.vishay.com